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Abstract Sampled-data (SD) based linear quadratic (LQ) control problem of stochastic linear

continuous-time (LCT) systems is discussed. Two types of systems are involved. One is time-

invariant and the other is time-varying. In addition to stability analysis of the closed-loop systems,

the index di�erence between SD-based LQ control and conventional LQ control is investigated. It is

shown that when sample time �T is small, so is the index di�erence. In addition, the upper bounds

of the di�erences are also presented, which are O(�T 2) and O(�T ), respectively.
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Information on system structure, states, outputs etc. is very important and indispensable

when we implement a control to the system involved. However, sometimes not all the information

is available because of the comprehension degree to the system and the impact and restriction

of many factors such as the measure instruments, the estimation methods, the sampling and

computation speed. For instance, in some cases, the system state itself is a continuous process,

but what we can measure is only sampled data, due to the limit of the sensor, and the speed of

sample pattern and signal processing. This leads to the following questions: for a given control

criterion, under what condition can a sampled-data (SD) based control match a conventional

full-state (FS) based control? If the former does not match the latter, what is the di�erence?

Can the di�erence be expressed quantitatively?

Stimulated by the above-mentioned issues, this paper studies the quadratic optimal control

problem of stochastic linear continuous-time systems (LCT). Two types of such systems are in-

vestigated. One is time-invariant and the other is with time-varying Markovian jump parameters.

In this work, the state is governed by a stochastic LCT di�erential equation, and thus, is a con-

tinuous process; but the state is unmeasurable except at the discrete sample time instants. So,

only the discrete information (i.e. sampled data) is available to the designer for control design.

Such control is usually named SD-based control. Generally speaking, the closed-loop system

with SD-based control is a hybrid system with both continuous and discrete information. There

has been lots of literature on this kind of system (see e.g. refs. [1|6]). The objects studied in

refs. [1|4] were deterministic systems; and the control design method was �rst to discretize the

original continuous-time model, and then, design the optimal control for the discrete model. Just

as shown by Example 6.6.1 of ref. [4], the disadvantage of this method is that the control e�ect

at the sample times is overemphasized, which is liable to cause the system 
uctuating between
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the sample times. Refs. [5, 6] considered SD-based stabilization control of nonlinear stochastic

systems with input gain as a known identity matrix. A relationship between sample step size

and stability property of the closed-loop system was established. The contribution of this pa-

per is: (i) General stochastic LCT systems are discussed, including systems with time-invariant

and time-varying Markovian jump parameters. (ii) The control design is directly based on the

original continuous system and the original continuous performance index, without involving

any discretized models and discretized indices. (iii) In addition to stability of the closed-loop

systems, the optimal index is analyzed. Particularly, the performance indices corresponding to

the SD-based LQ control and the FS-based LQ control, respectively, are compared. And the

di�erence between the performance indices is quantitatively expressed.

1 SD-based LQ optimal control of time-invariant systems

In this section, we consider SD-based LQ optimal control problem of LCT system with

time-invariant parameters. Suppose the system model is of the form

dxt = Axtdt+Butdt+ CdWt; (1)

where xt 2 R
n , ut 2 R

m and Wt 2 R
n are system state, input and disturbance, respectively; and

Wt is a standard Brownian motion.

Suppose the parameters A, B are known, and [A;B] is controllable. The quadratic index

function is

J(u) = lim sup
t!1

1

t

Z t

0

(x�sQxs + u�sRus)ds; (2)

where R > 0, Q > 0, and [A;Q1=2] is observable.

Our objectives are (a) to investigate the e�ect of the sample step size on the control functions,

(b) to �nd out the stabilizability condition by the SD-based control, (c) to study the di�erence

between the optimal index values corresponding to the SD-based LQ control and the FS-based

LQ control, respectively, and (d) to establish an explicit expression of this index di�erence. To

get a comparative picture, we �rst recall the optimal index value corresponding to the FS-based

LQ control in Theorem 1.1, and then, present the optimal index value corresponding to the

SD-based LQ control in Theorem 1.2.

For the convenience of citation, we denote u = fut; t > 0g, u� = fu�t ; t > 0g, and introduce

the following admissible control set:

U = fu : ut 2 �fxs : s 6 tg such that the state fxtg of (1) satisfying

lim
t!1

1

t
kxtk

2 = 0 and lim sup
t!1

1

t

Z t

0

kxsk
2ds <1g: (3)

Theorem 1.1. Consider system (1). Assume [A;B;Q1=2] is controllable and observable,

P is the unique positive-de�nite solution of the following algebraic Riccati equation

A�P + PA�
� PBR�1B�P +Q = 0: (4)

Then

(i) For any u 2 U , J(u) > tr(C�PC).

(ii) u�t
4
= �R�1B�Pxt 2 U , and J(u�) = tr(C�PC) = min

u2U
J(u).
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This result can be found in some works (e.g. ref. [7]). And so, the proof is omitted here.

We now consider the SD-based LQ optimal control. Assume the sample step size of the

system signal is �T . By using a zero-order hold, we can design an SD-based LQ control as

ut = �R�1B�Pxk�T ; t 2 [k�T; (k + 1)�T ): (5)

For simplicity, we will use xk to denote the sampled data xk�T of the state x at the sample

time k�T .

Under the control law (5), we have the following results.

Theorem 1.2. Consider the system (1). Assume [A;B;Q1=2] is controllable and observ-

able. Under the SD-based LQ control (5), if �T satis�es

�TekAk�T 6
1

(1 + 3kB�
1Hk)kA1k

; (6)

then

lim sup
t!1

1

t

Z t

0

(x�sQxs + u�sRus)ds 6 tr(C�PC) +O(�T 2); (7)

where

A1
4
= A�BR�1B�P; B1

4
= BR�1B�P; H =

Z 1

0

eA
�

1
teA1tdt: (8)

Remark 1.1. Let c1 = �TkA1ke
kAk�T , �1 =

kB�
1Hkc1

1� c1
. Then when �T satis�es (6), it

is easy to verify that

c1 2 (0; 1); �1 2

�
0;

1

3

�
:

Remark 1.2. Let f(x) = xekAkx. It is easy to see that, for x 2 [0;1), f 0(x) = (1 +

kAkx)ekAkx > 1 > 0. This implies that f(x) = xekAkx is strictly increased on x 2 [0;1).

Therefore, the range of �T can simply be determined as:

0 < �T 6 min

�
�;

1

(1 + 3kB�
1Hk)kA1kekAk�

�
;

where � is any given positive real number. In particular, one can take � = 1. In this case,

0 < �T 6 min

�
1;

1

(1 + 3kB�
1Hk)kA1ke

kAk

�
:

Of course, if the solution x0 of equation xe
kAkx = 1

(1+3kB�

1
Hk)kA1k

is given, then the range of �T

can be determined by: �T 2 (0; x0). Unfortunately, generally speaking, solving this equation

needs lots of computational load.

Remark 1.3. Here we give only a range of �T . When the sample step size �T is in

this range, it can be shown that the SD-based LQ control (5) guarantees the stability of the

closed-loop system, and is suboptimal. For general nonlinear systems or other control objectives,

it is diÆcult and complex to solve the following problems, such as, how to �gure out the maximal

range of �T , how to choose �T optimally, and how to obtain an explicit expression describing the

relationship between the sample step size and system structure and parameters. The best way is

to study case by case. This is because these problems depend not only on system structure and

parameters, but also on the control objectives. For instance, the control objectives of ref. [6] are

system stabilization and control robustness. By an appropriate description of the uncertainty
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measure, a relationship of the sample step size to the uncertainty and stabilizability of the

system is established. However the control objectives of this paper are system stabilization and

SD-based suboptimal LQ control. Hence, the choice of the sample step size depends on not only

the system parameters A,B, but also the index parameters R, Q and the index's quadratic form.

For instance, P ,A1,B1 and H stem from the index. Furthermore, since H =
R1
0

eA
�

1
teA1tdt, the

value of kHk is, in general, dependent on the real part of A1: the smaller the real part of A1 is,

the larger kHk is. By (6), this may reduce the range of �T .

We �rst introduce the following lemma before proving Theorem 1.2. This lemma is critical

in the proofs of Theorem 1.2, Theorem 2.1 and Theorem 2.2 of the next section.

Lemma 1.1
[8]
. Let fxt;Ftg be an adaptive process such thatZ t

0

x2sds <1 a:s: 8t > 0:

If fwt;Ftg is a Wiener process, then as t!1Z t

0

xsdws = O

0@s�Z t

0

x2sds

�
log log

�
e+

Z t

0

x2sds

�1A a:s:

Proof of Theorem 1.2. For the simplicity of expression, let us introduce the following

symbol t0
4
=

�
t

�T

�
�T . Here, dxe denotes the maximal integer less than or equal to x.

Under the SD-based control (5), system (1) has the following closed-loop form

dxt = A1xtdt+B1(xt � xt0)dt+ CdWt (9)

= A1xt0dt+ A(xt � xt0)dt+ CdWt: (10)

By Ito's formula, 8t 2 [t0; t0 +�T ),

xt � xt0 = A

Z t

t0
(xs � xs0)ds+ (t� t0)A1xt0 + C(Wt �Wt0): (11)

By (11), 8t 2 [t0; t0 +�T ),

kxt � xt0k 6 kAk

Z t

t0
kxs � xs0kds+�TkA1kkxt0k+ kC(Wt �Wt0)k: (12)

Applying Grownwall lemma, we obtain

kxt � xt0k 6 �TkA1kkxt0ke
kAk(t�t0) + kC(Wt �Wt0)k

+ kAk

Z t

t0
ekAk(t�s)kC(Ws �Wt0)kds 6 c1kxt0k+ c2(t); (13)

where 8<: c1 = �TkA1ke
kAk�T ;

c2(t) = kC(Wt �Wt0)k+ kAkekAk�T
Z t

t0
kC(Ws �Wt0)kds:

Notice that by (9) and Ito's formula,

x�t Pxt � x�0Px0 =

Z t

0

x�s (A
�
1P + PA1)xsds+

Z t

0

((xs � xs0)
�B�

1Pxs + x�sPB1(xs � xs0))ds

+ 2

Z t

0

x�sPCdWs + t � tr(C�PC):
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Then, we have

x�t Pxt +

Z t

0

(x�sQxs + u�sRus)ds

= x�0Px0 +

Z t

0

x�s (A
�
1P + PA1)xsds+

Z t

0

(x�sQxs + (u�s + us � u�s)
�R(u�s + us � u�s))ds

+

Z t

0

((xs � xs0)
�B�

1Pxs + x�sPB1(xs � xs0))ds+ 2

Z t

0

x�sPCdWs + t � tr(C�PC)

= x�0Px0 +

Z t

0

(xs � xs0)
�PBR�1B�P (xs � xs0)ds+ 2

Z t

0

x�sPCdWs + t � tr(C�PC)

= x�0Px0 +

Z t

0

kxs � xs0k
2
Gds+ 2

Z t

0

x�sPCdWs + t � tr(C�PC); (14)

where G
4
= PBR�1B�P , kxs � xs0k

2
G = (xs � xs0)

�G(xs � xs0).

Now, we show that when �T is small,

lim sup
t

1

t

Z t

0

kxs0k
2ds <1: (15)

It is easy to see that H satis�es A�
1H +HA1 = �I: By (9) and Ito's formula,

x�tHxt = x�0Hx0 �

Z t

0

kxsk
2ds+ 2

Z t

0

(xs � xs0)
�B�

1Hxsds+ t � tr(C�HC)

+ 2

Z t

0

x�sHCdWs: (16)

Further, by (13),

(xs � xs0)
�B�

1Hxs 6 kB�
1Hk � kxs � xs0k � kxsk 6 kB�

1Hk(c1kxs0k+ c2(s))kxsk

6 kB�
1Hk

�
c1

1� c1
kxsk+

c2(s)

1� c1

�
kxsk 6 �1kxsk

2 + �1(s)kxsk; (17)

where

�1 =
kB�

1Hkc1

1� c1
; �1(t) =

kB�
1Hkc2(t)

1� c1
:

Here we have used c1 2 (0; 1) (see Remark 1.1) and the following inequality induced from (13)

kxs0k 6
1

1� c1
kxsk+

c2(s)

1� c1
: (18)

Substituting (17) into (16), and using Lemma 1.1, we have

x�tHxt 6 x�0Hx0 � (1� 2�1)

Z t

0

kxsk
2ds+ 2

Z t

0

�1(s)kxskds

+ t � tr(C�HC) + 2

Z t

0

x�sHCdWs

6 x�0Hx0 � (1� 2�1)

Z t

0

kxsk
2ds+ 2

�Z t

0

k�1(s)k
2ds

�1=2�Z t

0

kxsk
2ds

�1=2

+ t � tr(C�HC) +O

 �Z t

0

kxsk
2ds

�2=3
!
: (19)

From (6) and Remark 1.1 it follows that

1� 2�1 >
1

3
:
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Then by the independent increment property of kWt �Wt0k and the large number law, we have

lim sup
t!1

1

t

Z t

0

k�1(s)k
2ds = E

Z �T

0

k�1(s)k
2ds = O(�T 2): (20)

And so,

lim sup
t!1

�
1

t
x�tHxt + (1� 2�1)

1

t

Z t

0

kxsk
2ds

�
6 tr(C�HC) +O

 
lim sup
t!1

�
1

t

Z t

0

kxsk
2ds

�1=2
!
+O

 
lim sup
t!1

1

t

�Z t

0

kxsk
2ds

�2=3
!
:

Thus,

lim sup
t!1

1

t

Z t

0

kxsk
2ds <1: (21)

Furthermore, by (18) and (21) it can be seen that (15) is true. Again, by (13) we have

lim sup
t!1

1

t

Z t

0

kxs � xs0k
2
Gds 6 2c21 � lim sup

t!1

1

t

Z t

0

kxs0k
2
Gds+ 2 lim sup

t!1

1

t

Z t

0

c2(s)
2ds

= O(�T 2): (22)

This together with (14) gives

lim sup
t!1

�
1

t
x�t Pxt +

1

t

Z t

0

(x�sQxs + u�sRus)ds

�
= tr(C�PC) + lim sup

t!1

1

t

Z t

0

kxs � xs0k
2
Gds = tr(C�PC) +O(�T 2):

Hence, (7) holds.

2 SD-based LQ optimal control of time-varying systems

In this section, we consider the SD-based optimal LQ control of LCT systems with Markovian

jump parameters. The system model is as follows:

dxt = A(rt)xtdt+B(rt)utdt+ C(rt)dWt; (23)

where xt 2 R
n , ut 2 R

m and Wt 2 R
n are system state, input and disturbance, respectively;

Wt is a standard Brownian motion; rt is a continuous-time discrete-state Markov process taking

values in a �nite set S = f1; � � � ; Ng with transition probability matrix (see ref. [10]) given by

P (�) = [Pij(�)] = [P (rt+� = j j rt = i)] = e�� ; t0 6 t 6 t+ �; (24)

where � = (�ij); �ij > 0; j 6= i, and

��ii =

NX
j=1;j 6=i

�ij : (25)

Since rt is a �nite state Markov process, it can be shown that j�ij j < 1 (see e.g. ref. [9]).

Suppose that A(rt) and B(rt) are known, and that the initial values x0 and Markov process

frtg are independent. Since in any �nite time interval, almost all sample paths of frtg are step

functions with, if any, at most a �nite number of discontinuous points, the solution of (23) in

any �nite time interval can be regarded as a �nite joining of the solutions of �nite time-invariant

systems (see ref. [10]). For notational simplicity, in the sequel, when rt = i, we will denote

A(rt) = Ai, B(rt) = Bi, etc.
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The objective of this section is to study the force of the sample step size on the control

e�ects, to �nd out the stabilizability condition by the SD-based control, further to investigate

the optimal index based on SD-based LQ control.

As in the above section, our objectives are (a) to investigate the e�ect of the sample step

size on the control functions, (b) to �nd out the stabilizability condition by the SD-based control,

and (c) to study the optimality of the SD-based LQ control.

Firstly, we introduce the following de�nition named Stochastic Stabilizability[11;12]. This

de�nition was aimed at \noise free" system

dxt = A(rt)xtdt+B(rt)utdt (26)

and (24).

De�nition 2.1. We say that systems (26) and (24) are stochastic stabilizability if, for

all �nite x0 2 R
n and r0 2 S, there exists a linear feedback control law ut = �L(rt)x(t)

with kL(rt)k <1 and a symmetric positive de�nite matrix fM satisfying

lim
T!1

E

(Z T

0

x� (t; x0; r0; u)x(t; x0; r0; u)dt j x0; r0

)
6 x�0

fMx0:

Or we simply say that [A(rt); B(rt)] is stochastic stabilizability.

The LQ index to be analyzed is of the following form, which is often used in stochastic

systems:

J0(u) = lim sup
T!1

1

T
E

(Z T

0

(x� (t)Q(rt)x(t) + u� (t)R(rt)u(t))dt j x0; r0

)
; (27)

where Ri > 0, Qi > 0, and [Ai; Q
1=2

i ] is observable.

As pointed out in ref. [11], for any given positive de�nite matrix Ri, nonnegative de�nite

matrix Qi, the N -coupled algebraic Riccati equation set

A�
iMi +MiAi �MiBiR

�1
i B�

iMi +

NX
j=1

�ijMj +Qi = 0 (28)

has a unique set of positive de�nite matrices fMi, i = 1, 2, � � �, Ng if and only if [A(rt); B(rt)]

is stochastic stabilizability and [Ai; Q
1=2

i ] is observable.

Similar to the last section, we introduce an admissible control set:

U
0 = fu : ut 2 �fxs : s 6 tg which makes the statefxtg of (23) satisfy

lim sup
t!1

1

t
Ekxtk

2 = 0 and lim sup
t!1

1

t
E

Z t

0

kxsk
2ds <1g: (29)

We have the following conclusions:

Theorem 2.1. Consider the system (23)-(24). Assume [A(rt); B(rt)] is stochastic stabi-

lizability; and [Ai; Q
1=2

i ] (8i 2 S) is observable; and Markov process frt; t > 0g and Brownian

motion fWt; t > 0g are independent. Then

(i) for any u 2 U0, J0(u) > lim sup
t!1

1

t
E

Z t

0

tr(C� (rs)M(rs)C(rs))ds;

(ii) the FS-based LQ control

u�t
4
= �L(rt)xt = �R(rt)

�1B(rt)
�M(rt)xt (30)
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is in U0, and such that

J0(u�) = lim sup
t!1

1

t
E

Z t

0

tr(C� (rs)M(rs)C(rs))ds = min
u2U0

J0(u);

where Mi, Ri, Qi are de�ned in (28) and (27), respectively.

Proof. (i) Similar to (2.29) of ref. [10], by (23) we haveeA(x�tM(rt)xt)
4
= lim

�!0

1

�

�
E[x�t+�M(rt+�)xt+� j rt]� x�tM(rt)xt

�
= x�t (A

�
1(rt)M(rt) +M(rt)A1(rt) +

X
j

�rt;jMj)xt + tr(C� (rt)M(rt)C(rt)); (31)

where eA is the in�nitesimal operator of the joint process frt; xtg. Then, from Dynkin's formula

Ex�tM(rt)xt = Ex�0M(r0)x0 + E

Z t

0

x�s (A
� (rs)M(rs) +M(rs)A(rs) +

X
j

�rs;jMj)xsds

+ E

Z t

0

(u�sB
� (rs)M(rs)xs + x�sM(rs)B(rs)us)ds

+ E

Z t

0

tr(C� (rs)M(rs)C(rs))ds:

And hence, we have

E

�
x�tM(rt)xt +

Z t

0

(x� (s)Q(rs)x(s) + u� (s)R(rs)u(s))ds

�
= Ex�0M(r0)x0 +E

Z t

0

tr(C(rs)
�M(rs)C(rs))ds

+ E

Z t

0

(us +R(rs)
�1B(rs)

�M(rs)xs)
�R(rs)(us +R(rs)

�1B(rs)
�M(rs)xs)ds: (32)

So, for any u 2 U0, we get

J0(u)

= lim sup
t!1

1

t
E

Z t

0

(x�sQ(rs)xs + u�sR(rs)us)ds

= lim sup
t!1

�
1

t
E

Z t

0

(us +R(rs)
�1B(rs)

�M(rs)xs)
�R(rs)(us +R(rs)

�1B(rs)
�M(rs)xs)ds

+
1

t
E

Z t

0

tr(C(rs)
�M(rs)C(rs))ds

�
> lim sup

t!1

1

t
E

Z t

0

tr(C(rs)
�M(rs)C(rs))ds:

Here we have used inequations: lim
t!1

1

t
Ekxtk

2 = 0 and lim sup
t!1

1

t
E

Z t

0

kxsk
2ds <1.

(ii) Under the control (30), system (23) becomes

dxt = A1(rt)xtdt+ C(rt)dWt; (33)

where

A1(rt)
4
= A(rt)�B(rt)L(rt): (34)

Recalling [A(rt); B(rt)] is stochastic stabilizability, from ref. [11] we know that the symmetric

solutions, Ki (i 2 S), of the equation set

A�
1;iKi +KiA1;i +

X
j

�i;jKj = �I (35)
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are positive de�nite. Construct K(rt) such that K(rt) = Ki when rt = i. Thus, similar to (2.29)

of ref. [10], we haveeA(x�tK(rt)xt)
4
= lim

�!0

1

�

�
E[x�t+�K(rt+�)xt+� j rt]� x�tK(rt)xt

�
= x�t (A

�
1(rt)K(rt) +K(rt)A1(rt) +

X
j

�rt;jKj)xt + tr(C� (rt)K(rt)C(rt))

= � kxtk
2 + tr(C� (rt)K(rt)C(rt)); (36)

where eA is the in�nitesimal operator of the joint process frt; xtg. Then, from Dynkin's formula

E

�
x�tK(rt)xt +

Z t

0

kxsk
2ds

�
= Ex�0K(r0)x0 + E

Z t

0

tr(C� (rs)K(rs)C(rs))ds: (37)

Therefore,

Ekxtk
2 = O(t) and E

Z t

0

kxsk
2ds = O(t): (38)

We now show

lim sup
t!1

Ekxtk
2 <1: (39)

Since for each i 2 S, K(i) > 0, and S has only �nite elements, there exist constants � > � > 0

such that

0 < �I 6 K(rt) 6 �I; 8t > 0: (40)

This together with (36) implieseA(x�tK(rt)xt) 6 �
1

�
x�tK(rt)xt + tr(C� (rt)K(rt)C(rt));

or

Ex�tK(rt)xt 6 e�
1

�
tEx�0K(r0)x0 + 2E

Z t

0

e�
1

�
(t�s)tr(C� (rs)K(rs)C(rs))ds = O(1): (41)

From this and (40) we see that (39) holds. Hence u� 2 U0.

By (39) and (32), we obtain

J0(u�) = lim sup
t!1

1

t
E

Z t

0

tr(C� (rs)M(rs)C(rs))ds:

From now on, we will focus on the e�ect analysis of the SD-based LQ control law:

ut = �L(i)xt = �R�1i B�
iMixk�T ; t 2 [k�T; (k + 1)�T ); rk�T = i: (42)

To this end, set

h1 = max
i2S

k �A1(i)k; h = max
i2S

kAik; d1 = �Teh�Th1; (43)

�A1(rt) = A(rt)�B(rt)L(rt0); t0 =

�
t

�T

�
�T; (44)

L = max
i2S

kMiBiR
�1
i k �max

j2S
kB�

jKjk; � = (N � 1)(ek�k � 1); (45)

where Kj is the solution of eq. (35).

Theorem 2.2. Consider system (23)-(24). Assume [A(rt); B(rt)] is stochastic stabiliz-

ability; [Ai; Q
1=2

i ] (8i 2 S) is observable; and Markov process frt; t > 0g and Brownian motion
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fWt; t > 0g are independent. Then under (42), if the sample step size �T satis�es8><>:
d1

4
= �Teh�Th1 < 1; �T 6 1;

Ld1

1� d1
+

8(1 + d1)
2

(1� d1)2
L��T 6

1

3
;

(46)

then

lim sup
t!1

1

t
E

Z t

0

(kxsk
2 + kusk

2)ds <1 (47)

and

lim sup
t!1

1

t
E

Z t

0

(x�sQ(rs)xs + u�sR(rs)us)ds

6 lim sup
t!1

1

t
E

Z t

0

tr(C� (rs)M(rs)C(rs))ds+O(�T ): (48)

Remark 2.1. Similar to Remarks 1.2 and 1.3, a practical range of the sample step size

�T can be easily determined if our objective is only to stabilize the system and get a suboptimal

or satisfactory SD-based LQ control, whereas it may be diÆcult and complex to clarify the

maximum range of such �T or choose �T optimally in some sense.

We now introduce a lemma before proving Theorem 2.2.

Lemma 2.1. Suppose rt is a Markov process taking values in a �nite set S = f1; � � � ; Ng,

and is subject to (24) and (25); and f(rs): R
1 ! R

1 and g(rs): R
1 ! R

n�n are measurable

functions with respect to �frt; t > sg. Then, in the case where s� s0 6 �T and �T 6 1,

E

�
kg(rs)� g(rs0)k

Z s

s0

f(r�)d� j rs0 = i

�
6 max

j 6=i
kg(j)� g(i)kmax

l2S
f(l) � �(s� s0)

2;

where � = (N � 1)(ek�k � 1).

Proof of Lemma 2.1. When s� s0 6 �T and �T 6 1, it is easy to seeX
j 6=i

Pij(s� s0) 6 (s� s0)
X
j 6=i

�
e�(s�s0) � I

s� s0

�
ij

6 (s� s0)
X
j 6=i





e�(s�s0) � I

s� s0





 6 �(s� s0): (49)

Since in any �nite time interval, almost all sample paths of the Markov process frtg are

step functions with at most a �nite number of discontinuous points, suppose these discontinuous

points are s1; s2; � � � ; sm, and satisfy s0 < s1 < s2 < � � � < sm < sm+1 = s: Then by (49) we

obtain

E

�
kg(rs)� g(rs0)k

Z s

s0

f(r�)d� j rs0 = i

�
=

X
rs = j;

j 6= i

kg(j)� g(i)k
X

rs12S;���;rsm2S

mX
i=0

f(rsi)(si+1 � si)

mY
i=0

Prs
i
;rs

i+1
(si+1 � si)

6
X

rs = j;

j 6= i

kg(j)� g(i)k

 
max
l2S

mX
i=0

f(l)(si+1 � si)

!0@ X
rs12S;���;rsm2S

mY
i=0

Prs
i
;rs

i+1
(si+1 � si)

1A
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6
X

rs = j;

j 6= i

kg(j)� g(i)kmax
l2S

f(l)(s� s0) � Pij(s� s0) 6 �(s� s0)
2
�max
j 6=i

kg(j)� g(i)kmax
l2S

f(l):

Proof of Theorem 2.2. De�ne

A1(rt)
4
= A(rt)�B(rt)L(rt); B1(rt)

4
= B(rt)L(rt); �B1(rt)

4
= B(rt)L(rt0);

u�t = � L(rt)xt = �R(rt)
�1B(rt)

�M(rt)xt:

Then system (23) with SD-based control law (42) has the following form:

dxt = A1(rt)xtdt+B(rt)(ut � u�t )dt+ C(rt)dWt

= �A1(rt)xt0dt+ A(rt)(xt � xt0)dt+ C(rt)dWt: (50)

This gives

xt � xt0 =

Z t

t0
A(rs)(xs � xt0)ds+

Z t

t0

�A1(rs)ds � xt0 +

Z t

t0
C(rs)dWs: (51)

Hence, we have

kxt � xt0k 6

Z t

t0
kA(rs)k � kxs � xt0kds+

Z t

t0
k �A1(rs)kds � kxt0k+ k

Z t

t0
C(rs)dWsk: (52)

Applying Grownwall lemma, we obtain

kxt � xt0k 6

Z t

t0
k �A1(rs)kds � kxt0k � e

R
t

t
0
kA(rt)kds +





Z t

t0
C(rs)dWs






+

Z t

t0
h � eh(t�s) �





Z s

t0
C(r�)dW�





 ds 6 d1kxt0k+ d2(t); (53)

where d1 is given by (43), and

d2(t) = heh�T
Z t

t0





Z s

t0
C(r�)dW�





 ds+ 



Z t

t0
C(rs)dWs





 : (54)

Similar to refs. [10, 11], by (50), Ito's formula and (35), we get

Ex�tK(rt)xt = Ex�0K(r0)x0 + E

Z t

0

x�s (A
�
1(rs)K(rs) +K(rs)A1(rs) +

X
j

�rs;jKj)xsds

+ 2E

Z t

0

(us � u�s)
�B� (rs)K(rs)xs + E

Z t

0

tr(C� (rs)K(rs)C(rs))ds

= Ex�0K(r0)x0 � E

Z t

0

kxsk
2ds+ E

Z t

0

tr(C� (rs)K(rs)C(rs))ds

+ 2E

Z t

0

(us � u�s)
�B� (rs)K(rs)xsds: (55)

Notice that

(us � u�s)
�B� (rs)K(rs)xs = (L(rs)xs � L(rs0)xs0)

�B� (rs)K(rs)xs

= (xs � xs0)
�L� (rs0)B

� (rs)K(rs)xs + x�s (L(rs)� L(rs0))
�B� (rs)K(rs)xs: (56)

The �rst term has the following upperbound estimate

(xs � xs0)
�L� (rs0)B

� (rs)K(rs)xs

6 L � kxs � xs0k � kxsk 6 L � [d1kxs0k+ d2(s)] � kxsk

6 L �

�
d1

1� d1
kxsk+

d2(s)

1� d1

�
� kxsk 6 �2kxsk

2 + �2(s)kxsk; (57)
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where

�2 =
Ld1

1� d1
; �2(t) =

Ld2(t)

1� d1
: (58)

Here we have used the condition d1 < 1, (53) and the following inequality induced from (53):

kxs0k 6
1

1� d1
kxsk+

d2(s)

1� d1
: (59)

Let c = max
i2S

tr(C�
i Ci). Then, by (54), we have

Ed2(t)
2
6 2E





Z t

t0
C(rs)dWs





2 + 2h2e2h�T (t� t0)

Z t

t0
E





Z s

t0
C(r�)dW�





2 ds
= 2E

Z t

t0
tr(C� (rs)C(rs))ds+ 2h2e2h�T (t� t0)

Z t

t0
E

Z s

t0
tr(C� (r�)C(r�))d�ds

6 2c(t� t0) + ch2e2h�T (t� t0)3:

Therefore, from �T 6 1 it follows

E

Z (k+1)�T

k�T

d22(s)ds 6 c�T 2 +
1

4
ch2e2h�T�T 4

6 c�T 2(1 + h2e2h): (60)

From this and Lemma 2.1, integrating the second term of (56) on interval (0;K�T ] (K 2 IN),

and then, taking the expectation, we have

E

Z K�T

0

x�s (L(rs)� L(rs0))
�B� (rs)K(rs)xsds

= E

Z K�T

0

k(L(rs)� L(rs0))
�B� (rs)K(rs)k �

�
2(1 + d1)

2
kxs0k

2 + 2d2(s)
2
�
ds

6

K�1X
k=0

NX
i=1

E

"Z (k+1)�T

k�T

k(L(rs)� L(rs0))
�B� (rs)K(rs)k � 2(1 + d1)

2
kxk�T k

2ds j rk�T = i

#

� P (rk�T = i) +

K�1X
k=0

E

Z (k+1)�T

k�T

k(L(rs)� L(rk�T ))
�B� (rs)K(rs)k � 2d2(s)

2ds

6
8(1 + d1)

2

(1� d1)2
L��T

K�1X
k=0

E

Z (k+1)�T

k�T

(kxsk
2 + d2(s)

2)ds+ 4L

K�1X
k=0

E

Z (k+1)�T

k�T

d22(s)ds

6
8(1 + d1)

2

(1� d1)2
L��TE

Z K�T

0

kxsk
2ds+ 4cL�T (1 + h2e2h)

�
1 +

2(1 + d1)
2

(1� d1)2
�

�
K�T: (61)

Here we have used �T 6 1 and the following inequality induced from (53):

kxsk
2
6 2(1 + d1)

2
kxs0k

2 + 2d2(s)
2; kxs0k

2
6

2

(1� d1)2
kxsk

2 +
2d2(s)

2

(1� d1)2
: (62)

Similarly, it can be shown that (61) holds for any t > 0, i.e.

E

Z t

0

x�s (L(rs)� L(rs0))
�B� (rs)K(rs)xsds

6
8(1 + d1)

2

(1� d1)2
L��TE

Z t

0

kxsk
2ds+ 4Lc�T (1 + h2e2h)

�
1 +

2(1 + d1)
2

(1� d1)2
�

�
t: (63)



No. 5 DEDEKIND ZETA-FUNCTIONS & DEDEKIND SUMS 395

Furthermore, by (55), (56), (57), (63) and the Schwartz inequality, we have

Ex�tK(rt)xt

6 Ex�0K(r0)x0 �

�
1� 2�2 �

16(1 + d1)
2

(1� d1)2
L��T

�
E

Z t

0

kxsk
2ds

+ E

Z t

0

tr(C� (rs)K(rs)C(rs))ds+ 2E

Z t

0

�2(s)kxskds

+ 8cL�T
�
1 + h2e2h

��
1 +

2(1 + d1)
2

(1� d1)2
�

�
t

6 Ex�0K(r0)x0 �

�
1� 2�2 �

16(1 + d1)
2

(1� d1)2
L��T

�
E

Z t

0

kxsk
2ds

+ E

Z t

0

tr(C� (rs)K(rs)C(rs))ds+ 2E

�Z t

0

�2(s)
2ds

�1=2�Z t

0

kxsk
2ds

�1=2

+ 8cL�T
�
1 + h2e2h

��
1 +

2(1 + d1)
2

(1� d1)2
�

�
t:

From (46) it is easy to verify

1� 2�2 �
16(1 + d1)

2

(1� d1)2
L��T >

1

3
:

Noticing the independent increment property of the standard Brownian motion kWt � Wt0k,

similar to (60), by the large number law we have

lim sup
t!1

1

t

Z t

0

�2(s)
2ds = O(�T 2):

Hence,

lim sup
t!1

E

�
1

t
x�tK(rt)xt +

�
1� 2�2 �

16(1 + d1)
2

(1� d1)2
L��T

�
1

t

Z t

0

kxsk
2ds

�
6 lim sup

t!1

1

t
E

Z t

0

tr(C� (rs)K(rs)C(rs))ds+O(�T )

+O

 
�T � lim sup

t!1

�
1

t
E

Z t

0

kxsk
2ds

�1=2
!
: (64)

Thus,

lim sup
t!1

1

t
E

Z t

0

kxsk
2ds <1; (65)

i.e. (47) holds.

Now we calculate the quadratic index. By (59) and (65) we have

lim sup
t!1

1

t

Z t

0

Ekxs0k
2ds <1: (66)

Then, similar to (61), by (53) we get

lim sup
t!1

1

t
E

Z t

0

(us � u�s)
�R(rs)(us � u�s)ds

= lim sup
t!1

1

t
E

Z t

0

[x�s (L(rs)� L(rs0))
�R(rs)(L(rs)� L(rs0))xs

+ 2x�s (L(rs)� L(rs0))
�R(rs)L(rs0)(xs � xs0)

+(xs � xs0)
�L� (rs0)R(rs)L(rs0)(xs � xs0)] ds = O(�T ): (67)
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Therefore, similar to (14), by the coupled Riccati equation (28) we have

lim sup
t!1

E

�
1

t
x�tM(rt)xt +

1

t

Z t

0

(x�sQ(rs)xs + u�sR(rs)us)ds

�
= lim sup

t!1

1

t
E

Z t

0

tr(C� (rs)M(rs)C(rs))ds+ lim sup
t!1

1

t
E

Z t

0

(us � u�s)
�R(rs)(us � u�s))ds

= lim sup
t!1

1

t
E

Z t

0

tr(C� (rs)M(rs)C(rs))ds+O(�T ): (68)

3 Conclusions

General stochastic LCT systems are studied in this work, including those with time-invariant

or time-varying parameters. The control design is directly based on the original continuous sys-

tem and the original continuous performance index, without involving any discretized models

or discretized indices. In addition to stability analysis of the closed-loop systems, optimality of

performance index of the closed-loop system is analyzed. Particularly, the performance indices

corresponding to the SD-based LQ control and the FS-based LQ control, respectively, are com-

pared. And the di�erence between the performance indices is quantitatively expressed. It is

shown that when sample time �T is small, so is the index di�erence. Besides, the upper bounds

of the di�erences are also presented, which are O(�T 2) and O(�T ), respectively. As for how to

�gure out the maximal range of �T , how to choose �T optimally, and how to obtain an explicit

expression describing the relationship between the sample step size and system structure and

parameters, it is very diÆcult and complex, and should be analyzed case by case.
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